Benefits of AFV Emissions Reductions

by

Danilo J. Santini

Center for Transportation Research

Argonne National Laboratory

Argonne, IL 60439

phone: (630) 252-3758

e-mail: dan_santini @ qmgate.anl.gov

presented to the

National Clean Cities Conference

June 1-3, 1998

Washington, DC

Emissions Reductions Vary by Type of Fuel Switch: Trade-Offs Often Exist and Must Be Addressed

Type of Fuel Switch	Reactive Hydro- carbons	Nitrogen Oxides	Partic- ulates	Green- house Gases	Vehicle Cost	Fuel Cost
Natural Gas for Gasoline	+++	++/ -	+	+/-	-	+
Natural Gas for Diesel	+	++++	+++++	+/	_	+/-
Electric for Gasoline	+++	+++	++	+++/-		+
LPG for Gasoline	++	-	+	+	-	+
LPG for Diesel	+	+++	+++++	+/-	-	+/-
E85 for Gasoline	+/-	+	+	++	neutral	

Green is good, dark green better: Red is bad, dark red worse: Clear is uncertain

It is Important to Distinguish "Real" and Regulated Emissions Benefits

- Regulated (Ozone 1 hr)
 - Can be turned into \$
 - Are best that can be done,
 given politics and limited
 knowledge
 - Are specified by written rules and procedures
 - Will change when regulation is seen to fail to reach real goals
 - Require near-term actions

- Real(Ozone 8 hr, Fine PM, Greenhous Gases)
 - Are imperfectly known
 - Require modeling to estimate
 - Exist regardless of regulation
 - Are also in the mind of the beholder
 - As perceived, cause regulations to be set: As evolved, cause revisions

Regulations Cause Emissions Reductions to Have a Dollar Value to Someone

- Present One Hour Ozone Standards Still Have to Be Met, Require HC and NO_X Cuts
- New Eight Hour Ozone Standards May Increase the Geographic Extent of Places Where Emission Cuts Have Value, Especially $NO_{\rm X}$
- Fine Particulate Matter (PM) is Theoretically Far More Valuable to Reduce than Present Coarse PM Regulations Require, but New PM Nonattainment Areas will not be Determined for a Few Years
- Many More Locations Violate Present Ozone Standards than Violate Present PM Standards
- Greenhouse Gases are Not Regulated

Argonne National

Since Larger Vehicles are Allowed to Emit More, Fixed Percentage Reductions are Worth More in Pickup Trucks and Big SUVs (LDT4)

Clean Cities & Alternative Fuels are in Their Infancy - Not a Large Market Yet

- EPA Cannot Spend Same \$ on Clean Fuels as on Gasoline
- Yet Regulations Have to be Met
- EPA Tools Now Used for Gasoline & Diesel are far less Accurate When Applied to AFVs
- "Catch 22" Can Hinder AFV Introduction
- Insistence on Emissions Performance Being Better Than Gasoline in All Respects Can Hinder AFVs Air Quality is the Issue, not Emissions

Work Is Underway on Emissions Reduction Benefit Quantification by Vehicle Size Class

- EPA to Add CNG to its Mobile Emission Model
- EPA VMEP Ozone Program Can Accept All Fuels, Subject to Quantification Method Approval
- TRB/DOE/EPA Summer Workshop Aug. 2-4 to Discuss Fuels Attributes, EPA Procedures
- DOE/CCAP Partnering to assess cap & trade program
- DOE/OTT Supports "Localization" of National Models of CNGVs, EVs, Including:
 - Ozone Precursors (HC and NOx), Fine PM
 - Greenhouse Gases
 - Oil Use Reduction

Air Quality Standards are Evolving

- A New 8-Hour Ozone Standard will Require New State Implementation Plans (SIPs), with New Modeling, Soon
- Clean Cities Programs Need to Make all Legitimate Claims for SIP Ozone Emissions Credit, Through State Agencies, Obtaining Approval by Regional EPA Offices, Soon
- 5 Years of R&D Will Determine the Pervasiveness of Fine PM Problems: Present PM Reductions are "Anticipatory", No Credits from EPA for a While
- Greenhouse Gas Reductions only Have Public Relations Value for Now, Regulation Least Certain

Emissions Reductions Are Sometimes Needed In Areas Meeting Standards

- "Conformity" for Areas Near Air Quality Violations Requires Submissions to EPA Concerning an Emissions Budget for the Metro Area
- When a Metro Area Emissions Budget is Tight, Major New Construction Projects May Be Required to "Find" Emissions Cuts to Offset Construction Induced Increases

\$ Values of Emissions Reductions Depend on Location Where Emissions Occur and the Competing Gasoline Type Used in That Location

CNG (average fuel) or EV Compared to:	Quantity of Emissions Reduction	\$ Value /Ton of Emissions Reduction	\$ Value per Vehicle of Emissions Cut
California RFG	Least Most		???
Federal RFG*	Intermediate	Intermediate	???
SE US Low RVP*	Intermediate	Intermediate	???
Other Gasolines	Most	Least	???

^{*} Reductions vs. SE US Low RVP probably slighlty better than vs. Federal RFG

Judgemental values, actual estimates have not been compiled.

As indicated, end results are not "intuitive".

\$ Values of Emissions Reductions Depend on LocationWhere Emissions Occur and the Competing Gasoline Vehicle Type Used in That Location

CNG (average	Quantity of	\$ Value /Ton	\$ Value per	
fuel) or EV	Emissions	of Emissions	Vehicle of	
Compared to:	Reduction	Reduction	Emissions Cut	
California Vehicles				
TLEV	Intermediate	High	High	
LEV	Small	High	Intermediate	
ULEV	Maybe None	High	Small-None	
	3.5	TT. 1	Very Small	
EZEV	EZEV Maybe None High		to None	
Federal Vehicles				
Tier 1 Cars		Intermediate	Intermediate	
and Small Trucks	Intermediate	to None	to None	
NLEV Cars	G	TT: 1 / NT	Intermediate	
and Small Trucks	Small	High to None	to None	
Tier 1 Large	77.		Highest	
Light Trucks	Highest	High to None	to None	

Judgemental values, actual estimates have not been compile. As indicated, end results will vary greatly by location.